只不过,这种发动机的制造难度可比反物质发动机的难度高多了,而且价格可能非常昂贵,除了可控核聚变反应堆本身的难度以外,还需要一些小一些的多阶段反应装置后一个阶段利用前一阶段产物。
确实是一个大胆而又疯狂的构想。
而且,不仅仅是这位桂天星教授,除了他以外,火箭技术研究院的另一位徐志雄教授,还提出了一个更加大胆而疯狂的构想不再是利用受控的核反应,而是利用核爆炸来推动飞船!
这已经不只是一种发动机了,而是一种核脉冲火箭飞船。
这种飞船的原理是,携带大量的低当量原子弹,一颗颗地抛在身后引爆,然后在飞船后面安装一个推进盘,吸收爆炸的冲击波推动飞船的前进。
当然了,原子弹并非直接作用于推进盘上,在释放出原子弹后,飞船内紧接着再释放出一些由聚乙烯塑料制成的固体圆盘,当飞船驶出一定距离,原子弹将在飞船后面60米处爆炸,蒸发掉塑料圆盘,将其转化成高热的等离子浆。
由于塑料盘位于原子弹和飞船之间,等离子浆中相当部分将会追上飞船,撞击太空飞船尾部巨大的金属推进盘,从而推动太空飞船高速行驶,其理论比冲量可以达到1万到1百万秒。
按照徐志雄教授的说法,之所以选择塑料,是因为塑料对核爆炸产生的中子的吸收效果好,也就是说它同瞬间的辐射能配合得非常好,它将分解成轻原子比如氢和碳并以高速运动。
有人当即就怀疑了,太空飞船的硕大推进盘经受得起被核爆炸后产生的高温等离子融化或腐蚀吗?
这位疯狂的徐教授竟然早就用氦离子发生器进行了摹拟测试,结果是瞬间高温的等离子只会对金属推进盘表面产生轻微的腐蚀,甚至可以忽略不计,没必要设计专门的冷却系统,普通的铝和钢就足以成为制造金属推进盘的耐久材料。
内容未完,下一页继续阅读